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Abstract

We define contact fiber bundles and investigate conditions for the existence of contact structures
on the total space of such a bundle. The results are analogous to minimal coupling in symplectic
geometry. The two applications are construction ofK-contact manifolds generalizing Yamazaki’s
fiber join construction and a cross-section theorem for contact moment maps.
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1. Introduction

A few years ago I came across an interesting paper by Yamazaki[7] in whichK-contact
manifolds were constructed “by fiber join”. The contact manifolds in question were odd-
dimensional sphere bundles over Riemann surfaces. These bundles were associated to cer-
tain principal torus bundles, and the choice of a contact form on the total space involved a
choice of a connection on the torus bundle whose curvature had to satisfy certain nonde-
generacy condition. It all very much looked like a contact version of Sternberg’s minimal
coupling construction in symplectic geometry. The goal of the present paper is to explain
why this is indeed the case. In order to do this systematically I felt it is necessary to first sort
out the definition of a contact fiber bundle and to investigate conditions for the existence
of contact structures on the total space of such a bundle. Of course, since any co-oriented
contact manifold is the quotient of a symplectic cone by dilations and since any symplectic
cone is a symplectization of a contact manifold, one can argue that contact fiber bundles are
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simply symplectic fiber bundles with fibers being symplectic cones. However, it seems use-
ful to study the matter completely in contact terms. For example, the notion of aK-contact
structure does not translate naturally into symplectic terms.

Remark 1.1. In this paper we assume that all contact structures are co-oriented. Recall that
a contact structureξ on a manifoldM isco-orientedif there exists a 1-formαwith kerα = ξ.
Equivalentlyξ is co-oriented if its annihilatorξ◦ ⊂ T ∗M is an oriented line bundle. That
is, the line bundle minus the zero section,ξ◦ \M, has two components and we have single
out one of the components, call itξ◦+. We thus may think ofξ◦+ as a co-orientation ofξ.
Note that the image ofα : M → TM with kerα = ξ singles out one of the components
of ξ◦ \M. The same remark applies to any codimension 1 distributionξ onM, not just to
contact ones. That is, we only consider co-oriented distributions.

A note on notation. If U is a subspace of a vector spaceV , we denote its annihilator in
the dual vector spaceV ∗ byU◦. ThusU◦ = {� ∈ V ∗|�|U = 0}. We use the same notation
for distributions.

Throughout the paper, the Lie algebra of a Lie group denoted by a capital Roman letter
is denoted by the same small letter in the fraktur font: thusg denotes the Lie algebra of a
Lie groupG etc. The vector space dual tog is denoted byg∗. The identity element of a Lie
group is denoted by 1. The natural pairing betweeng andg∗ is denoted by〈·, ·〉.

When a Lie groupG acts on a manifoldM we denote the action by an elementg ∈ G

on a pointx ∈ M by g · x; G · x denotes theG-orbit of x and so on. The vector field
induced onM by an elementX of the Lie algebrag of G is denoted byXM (that is,
XM(x) = (d/dt)|0(exptX) · x) and the diffeomorphism induced byg ∈ G onM by gM .
Thus in this notationg · x = gM(x). The isotropy group of a pointx ∈ M is denoted by
Gx; the Lie algebra ofGx is denoted bygx and is referred to as the isotropy Lie algebra
of x. Recall thatgx = {X ∈ g|XM(x) = 0}.

If X is a vector field andτ is a tensor, thenLXτ denotes the Lie derivative ofτ with
respect toX.

If P is a principalG-bundle then [p,m] denotes the point in the associated bundle
P ×G M = (P ×M)/G which is the orbit of(p,m) ∈ P ×M.

2. What is a contact fiber bundle?

LetF be a manifold with a contact distributionξF ⊂ TF. Since we assume that all contact
structures are co-oriented, there is a 1-formαF ∈ Ω1(F) with kerαF = ξF which gives
ξF its co-orientation. Denote the group of co-orientation preserving contactomorphisms of
(F, ξF ) by Diff +(F, ξF ). That is:

Diff +(F, ξF ) = {ϕ : F → F |ϕ∗αF = ehαF for some h ∈ C∞(F )}.

Definition 2.1 (provisional). Let(F, ξF ) be a contact manifold. A fiber bundleF → M
π→B

is contactif the transition maps take values in Diff+(F, ξF ). That is, suppose{Ui} is a cover
of B by sufficiently small sets. Then there exist trivializationsφi : π−1(Ui)→ Ui×F such
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that for all indicesi, j with Ui ∩ Uj �= ∅ and for everyb ∈ Ui ∩ Uj the diffeomorphisms
φj ◦ φ−1

i |{b}×F : F → F are elements of Diff+(F, ξF ).

Remark 2.2. It follows from the definition that for every pointb ∈ B the fiberFb := π−1(b)

has a well-defined (co-oriented) contact structureξb. Namely letUi be an element of the
cover containingb. Letpr2 : Ui×F → F denote the projection on the second factor. Then
αi := (pr2 ◦ φi)∗αF ∈ Ω(π−1(Ui)) is a 1-form with the restrictionαi|Fb to the fiber being
contact. Moreover, ifb is also inUj then ker(αi|Fb) = ker(αj|Fb), so the fiberFb has a
well-defined contact structureξb. We let

ξν =
⋃

b∈B
ξb ⊂ V, (2.1)

whereξV is a codimension one subbundle of the vertical bundleV := ker(dπ : TM →
TB).

Lemma 2.3. LetF → M
π→B be a contact fiber bundle as inDefinition 2.1. There exists

a 1-formα on M such that(kerα) ∩ V = ξν, whereV ⊂ TM is the vertical bundle andξν

is the bundle defined by(2.1). In other words, a contact fiber bundle has a globally defined
1-form that restricts to a contact form on each fiber.

Proof. Let {Ui} be a sufficiently small open cover ofB. Choose a partition of unityρi
subordinate to{Ui}. Letαi ∈ Ω1(π−1(Ui)) denote the 1-forms constructed inRemark 2.2.
Thenα = ∑

i(π
∗ρi)αi is a globally defined 1-form onM with (kerα) ∩ T(Fb) a contact

structure on each fiberFb. �

Lemma 2.4andCorollary 2.6form a converse toLemma 2.3. Recall that aconnection
on a fiber bundleπ : M → B is a choice of a complementH in TM to the vertical bundle
V of π so thatTM= H⊕ V.

Lemma 2.4. LetF → M
π→B be a fiber bundle with a co-oriented codimension1 distribu-

tion ξ ⊂ TM such that for each fiberFb, the intersectionξ ∩ T(Fb) is a contact distribution
onFb. Then

1. there is a natural connectionH = H(ξ) on the fiber bundleF → M
π→B;

2. the parallel transport with respect toH (when it exists) preserves the contact structure
on the fibers. Additionally parallel transport is co-orientation preserving.

Proof. Sinceξ is co-oriented there is a 1-formα onM with kerα = ξ. Letω = dα|ξ. Since
fiber restrictionsα|Fb are contact,ω|ξν is nondegenerate, whereξν is the intersection of the
distributionξ with the vertical bundleV. We defineH to be theω-perpendicular toξν in
(ξ, ω):

H = (ξν)ω.

Note that ifα′ is another 1-form with kerα′ = ξ giving ξ its co-orientation thenα′ = ef α
for some functionf ∈ C∞(M). Hence dα′|ξ = ef (dα|ξ) and consequently the definition
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ofH does not depend on the choice ofα. Sinceω|ξν is nondegenerate:

ξ = ξν ⊕H (2.2)

and sinceξν = ξ ∩ V,H is a connection onπ : M → B.
We now argue that parallel transport defined byH preservesξν. (Here we tacitly assume

that the parallel transport exists, i.e. that the connectionH is complete. If the fiberF is
compact thenH is complete, but this need not be true in full generality. If the parallel
transport does not exist globally, it does exist locally: one can parallel transport for short
times small pieces of the fibers. The statement of the lemma then becomes messy. And
so we gloss over this point here and elsewhere in the paper.) Letv be a vector field on
B, let v# denote its horizontal lift toM with respect toH: for eachm ∈ M, v#(m) is the
unique vector field inHm ⊂ TmM with dπ(v#(m)) = v(π(m)). Letw be a section ofξν.
We will argue that the Lie bracket [v#, w] is also a section ofξν. Sincev# is a horizontal
lift and w is vertical, the bracket [v#, w] is also vertical: [v#, w] ∈ Γ(V). By definition
of H,0 = ω(v#, w) = dα(v#, w). Sincev#, w ∈ Γ(ξ), we haveι(w)α = 0 = ι(v#)α.
Therefore, 0= dα(v#, w) = v#(α(w)) − w(α(v#)) − α([v#, w]). Henceα([v#, w]) = 0,
i.e. [v#, w] ∈ ξ. Consequently, [v#, w] ∈ Γ(V) ∩ Γ(ξ) = Γ(V ∩ ξ) = Γ(ξν), and so the
parallel transport with respect toH preservesξν.

Finally we argue that the parallel transport also preserves the co-orientation. This is a
continuity argument. Letγ : [0,1] → B be a path,Pγ(t) : Fγ(0) → Fγ(t) be the parallel
transport alongγ. Since dPγ(t)(ker(α|Fγ(0) )) = ker(α|Fγ(t) ), we have

(Pγ(t))
∗(α|Fγ(t) ) = ft(α|Fγ(0) )

for some nowhere zero functionft ∈ C∞(Fγ(0)) depending continuously ont. Sincef0 =
1 > 0, ft > 0 for all t ∈ [0,1]. �

Definition 2.5. We will refer to the connectionH = H(ξ) defined inLemma 2.4as a
contact connection.

Corollary 2.6. Let F → M
π→B be a fiber bundle with a co-oriented codimension1

distribution ξ ⊂ TM such that for each fiberFb, the intersectionξ ∩ T(Fb) is a contact

distribution onFb and the associated contact connection is complete. ThenF → M
π→B

is a contact fiber bundle in the sense ofDefinition 2.1.

Proof. Use parallel transport with respect to the contact connectionH to define local
trivializations of the fiber bundleπ : M → B. �

Remark 2.7. Corollary 2.6shows that we may alsodefinea contact fiber bundleto be a

fiber bundleF → M
π→B with a co-oriented codimension 1 distributionξ ⊂ TM such that

ξ ∩ T(Fb) is a contact structure on each fiberFb of π. From now on we will take this as our
definition of a contact fiber bundle as opposed toDefinition 2.1.

We finish this section by pointing out that contact fiber bundles as defined in the remark
above are easily constructible as associated bundles.
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Lemma 2.8. Let (F, ξF ) be a contact manifold with an action of a Lie group G preserving
the contact structureξF and its co-orientation. LetG→ P → B be a principal G-bundle.
For any(G-invariant) connectionH ⊂ TP the distribution:

ξM := H̄⊕ (P ×G ξF ) (2.3)

makesM = P×GF into a contact fiber bundle. HerēH ⊂ TM is the connection onM → B

induced byH.

Proof. See proof ofTheorem 3.6. �

3. When is a contact fiber bundle a contact manifold?

We now consider the conditions on a contact fiber bundle(F → M
π→B, ξ ⊂ TM) that

ensure thatξ is a contact structure on the total spaceM. We will see that the question is
related to the fatness of the contact connectionH(ξ) and the image of the moment map for
the action of the structure group ofπ : M → B on the fiberF .

Recall that the curvature of a connectionH on a fiber bundleF → M
π→B is a 2-form

CurvH onB with values in the vector fields on the fiber: forx, y ∈ TbB and vector fields
v,w ∈ χ(B) with v(b) = x, w(b) = y

(CurvH)b(x, y) := [v#, w#] − [v,w]# ∈ χ(Fb),
where, as inLemma 2.4, # denotes the horizontal lift with respect toH.

Proposition 3.1. Let (F → M
π→B, ξ ⊂ TM) be a contact fiber bundle, H = H(ξ) the

contact connection, and ξ◦ ⊂ T ∗M the annihilator ofξ. The distributionξ is a contact
structure on M iff for allm ∈ M and all0 �= η ∈ ξ◦m:

〈η, [(CurvH)b(·, ·)](m)〉 : TbB× TbB→ R is nondegenerate, (3.1)

whereb = π(m).

Proof. Choose a 1-formα on M with kerα = ξ. The distributionξ is contact iff dα|ξ
is nondegenerate. Nowξ = H ⊕ ξν (cf. (2.2)) and dα|ξν is nondegenerate since(F →
M

π→B, ξ) is a contact fiber bundle. Consequently,ξ is contact iff dα|H is nondegenerate.
Now fix a pointm ∈ M and two vectorsx, y ∈ Hm ⊂ TmM. Choose vector fieldsv,w on
B with v#(m) = x, w#(m) = y (# denotes the horizontal lift). Then, omitting evaluations
atm, we have

dα(x, y)= dα(v#, w#) = v#(α(w#))− w#(α(v#))− α([v#, w#])

= 0− 0− α([v#, w#] − [v,w]#),

sinceα(u#) = 0 for any vector fieldu onB. Since(CurvH)(v,w) = [v#, w#]− [v,w]#, we
have

(dαm|Hm)(x, y) = dαm(x, y) = 〈αm, [(CurvH)π(m)(dπ(x),dπ(y))](m)〉.
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For any 0�= η ∈ ξ◦m there iss �= 0 such thatη = sαm. Therefore, dαm|Hm is nondegenerate
iff (3.1)holds for any 0�= η ∈ ξ◦m. �

We now reinterpret(3.1) in terms of contact moment maps and fatness.

3.1. Contact moment maps

Consider a manifoldF with a co-oriented contact structureξF . As mentioned in
Remark 1.1, the punctured annihilator bundle(ξF )◦ \ F has two components:(ξF )◦ \ F =
(ξF )◦+ � (−(ξF )◦+). Consider the Lie algebra of contact vector fieldsχ(F, ξF ) onF . Recall
that the contact vector fields are in one-to-one correspondence with sections of the line
bundleTF/ξ→ M: the mapχ(F, ξ)→ Γ(TF/ξ), v �→ v+ ξ gives the bijection. This is a
standard fact. See for example[5]. There is a natural pairing between the points of the line
bundle(ξF )◦ → F and the contact vector fields:

(ξF )◦ × χ(F, ξF )→ R, ((f, η), v) �→ 〈η, v(f )〉 (3.2)

for all f ∈ F , η ∈ ((ξF )◦)f andv ∈ χ(F, ξF ), where on the right the pairing is between a
covectorη ∈ (ξF )f ⊂ T ∗f F and a vectorv(f) ∈ TfF .

Suppose a Lie algebrag acts onF by contact vector fields, i.e. suppose there is a rep-
resentationρ : g → χ(F, ξ) (or an anti-representation; this is the usual problem with left
actions and Lie brackets defined in terms of left invariant vector fields). Then the moment
mapΨ : χ(F, ξ)∗ ⊃ (ξF )◦ → g∗ should be the transpose ofρ relative to the pairing(3.2)
and the natural pairingg∗ × g→ R. However, for various reasons (see below) in the case
of co-oriented contact structures, it is more convenient to define the contact moment map
for ρ as a mapΨ : (ξF )◦+ → g∗:

〈Ψ(f, η),X〉 = 〈(f, η), ρ(X)〉 = 〈η, ρ(X)(f )〉. (3.3)

Note that(ξF )◦+ is a symplectic submanifold of the cotangent bundleT ∗F . Suppose the
anti-representationρ : g → χ(F, ξ) comes from a (left) action of a Lie groupG on F

preservingξ and its co-orientation (with Lie algebra ofG beingg). In this case we write
XF for ρ(X). The moment mapΨ : (ξF )◦+ → g∗ is simply the restriction to(ξF )◦+ of the
moment mapΦ : T ∗F → g∗ for the lifted action ofG onT ∗F . The action ofG preserves
ξF and its co-orientation if and only if the lifted action preserves(ξF )◦+. A G-invariant
1-form αF onF with kerαF = ξF is aG-equivariant section of the bundle(ξF )◦+ → F .
Therefore, the composition

ΨαF := Ψ ◦ αF : F → g∗ (3.4)

is aG-equivariant map. We will refer to it as theαF -moment map. Note that by definition

〈ΨαF ,X〉(f ) = 〈αFf ,XF(f )〉 = (ι(XF )α
F )(f ) (3.5)

for all X ∈ g and allf ∈ F . This is the “classical” definition of a contact moment map
(cf. [1–3]). It depends on a choice of a contact form, unlikeΨ : (ξF )◦+ → g∗, which is
“universal.”
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Remark 3.2. The pairing(3.2) suggests a different way of looking atProposition 3.1.
Denote byξb the contact structure on the fiberFb : ξb = ξ ∩ T(Fb). Then for a point
m ∈ Fb, a covectorη ∈ (ξb)◦m and a vector fieldv ∈ χ(Fb, ξb) we have

〈(m, η), v〉 = 〈η, v(m)〉 ∈ R.

Note that the connectionH allows us to identifyξ◦ with
⋃

b(ξ
b)◦ and consequentlyξ◦+ =⋃

b(ξ
b)◦+. Consequently, the curvature CurvH of the connectionHgives rise to a well-defined

skew-symmetric formσH on the vector bundlẽH→ ξ◦+ which is the pull-back ofH→ M

by the projectionp : ξ◦+ → M. Namely, sinceH � π∗(TB), H̃ = (π ◦ p)∗(TB). So given
m ∈ M, η ∈ (ξ◦+)m andu, v ∈ TbB, whereb = π(m),

(σH)(m,η)(u, v) := 〈(m, η), (CurvH)b(u, v)〉 = 〈η, [(CurvH)b(u, v)](m)〉. (3.6)

ThusProposition 3.1asserts:

The distributionξ is a contact structure onM if and only if σH defined above is

a symplectic form on the vector bundlẽH→ ξ◦+. (3.7)

3.2. Fatness

Definition 3.3 (Weinstein[6]). A connection 1-formA on a principalG-bundleG →
P

π→B is fat at a pointµ ∈ g∗ if for any pointp ∈ P the bilinear mapµ ◦ (CurvA)p :
HA
p ×HA

p → R is nondegenerate, where CurvA is the curvature of the connection formA

andHA
p = ker(Ap : TpP → g) is the associated horizontal distribution.

Remark 3.4. If A is fat atµ ∈ g∗, it is fat at every point of the set{Ad†(g)(aµ)|g ∈ G,

a > 0} (here and elsewhere Ad† denotes the coadjoint action).

Remark 3.5. Fatness is an open condition. Thus ifA is fat atµ, it is fat at every point of a
G× R

+-invariant neighborhood ofµ in g∗.

Theorem 3.6. Suppose a Lie group G acts[on the left] on a manifold F preserving a
contact distributionξF and its co-orientation; let Ψ : (ξF )◦+ → g∗ denote the associated
moment map. Let G → P → B be a principal G-bundle. Given a connection1-form
A on P, there exists a co-oriented codimension1 distribution ξ on the associated bundle
M = P ×G F → B which intersects the tangent bundle of each fiberFb in a contact
distribution isomorphic toξF . Explicitly

ξ = H⊕ (P ×G ξF ), (3.8)

whereH is the connection onπ : M → B induced by A.
Moreover, the distributionξ is a contact structure on M if and only if the connection A

is fat at the points of the points of the imageΨ((ξF )◦+).
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Proof. Since the action ofG onF preservesξF and its co-orientation

ξV := P ×G ξF

is a well-defined co-oriented subbundle of the vertical bundleV � P ×G (TF) of M → B.
The connection 1-formA defines a complementH to V in TM. Therefore, the distribution
ξ onM defined by(3.8) is a co-oriented codimension 1 distribution. By construction, for
each fiberFb we haveξ ∩ T(Fb) = ξV|Fb � ξF . (More precisely, for each pointp ∈ P we
have an embeddingιp : F ↪→ M, ιp(f ) = [p, f ] (where [p, f ] ∈ P ×G F denotes the
image of(p, f ) ∈ P × F ). Then dιp(ξF ) = ξV|Fb whereb = π(p).)

Now suppose thatA is fat at the points ofΨ((ξF )◦+). By Proposition 3.1andRemark 3.2
it enough to show that for any [p, f, η] ∈ P ×G (ξF )◦+ = ξ◦+, the pairing

(σH)([p,f,η]) = 〈[p, f, η], ((CurvH)b(·, ·))([p, f ])〉 : TbB× TbB→ R

is nondegenerate (whereb = π([p, f ])).
The curvature CurvA : HA ×HA → g of A defines a 2-formCurvA onB with values in

the adjoint bundleP ×G g. To write outCurvA ∈ Ω2(B, P ×G g) explicitly we need a bit
of notation. For a pointb ∈ B and vectorsx, y ∈ TbB denote the horizontal lift ofx andy
toHA

p by x#
p andy#

p, respectively. Then

(CurvA)b(x, y) = [p, (CurvA)p(x
#
p, y

#
p)] ∈ P ×G g

for anyp ∈ P in the fiber ofP → B aboveb.
SinceG acts onF by contact transformations, there is an (anti-)representationρ : g→

χ(F, ξF ), ρ(X) = XF , from the Lie algebrag of G to contact vector fields onF . Recall:
the moment mapΨ : (ξF )◦+ → g is the adjoint ofρ in the sense that

〈(f, η), ρ(X)〉 = 〈Ψ(f, η),X〉
for all f ∈ F , η ∈ (ξF )◦+, X ∈ g, where on the right the pairing is the natural pairing
g∗ × g→ R and on the left it is the pairing(3.2).

Sinceρ andΨ are equivariant, they induce maps of associated bundles

Ψ̄ : P ×G (ξF )◦+ → P ×G g
∗, Ψ̄ ([p, f, η]) = [p,Ψ(f, η)]

and

ρ̄ : P ×G g→ P ×G (χ(F, ξF )), ρ̄([p,X]) = [p, ρ(X)].

The two pairings above give rise to fiber-wise pairings:

(P ×G g
∗)⊕ (P ×G g)→ P ×G R = B× R, [p,µ] ⊕ [p,X] �→ (π(p), 〈µ,X〉)

and

P ×G ((ξF )◦+ × χ(F, ξF ))→ P ×G R = B× R,

[p, ((f, η), v)] �→ (π(p), 〈η, v(f )〉),
whereπ now denotes the projectionP → B. The maps̄ρ andΨ̄ are adjoint with respect to
the two fiber-wise pairings.
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Finally, the mapρ̄ relates the two curvatures,CurvA ∈ Ω2(P ×G g) and CurvH ∈
Ω2(B, P ×G χ(F, ξF )):

ρ̄ ◦ CurvA = CurvH.

Putting together the above remarks we get

(σH)[p,f,η](u, v)= 〈[p, f, η], (CurvH)b(u, v)〉
= 〈[p, f, η], ρ̄ ◦ (CurvA)b(u, v)

= 〈Ψ̄ ([p, f, η]), (CurvA)b(u, v)〉
= 〈Ψ(f, η), (CurvA)p(u

#
p, v

#
p)〉

for all [p, f, η] ∈ P ×G (ξF )◦+ and anyu, v ∈ TbB (b = π([p, f ]) ∈ B). ThusA is fat at
the points ofΨ((ξF )◦+) if and only if σH is nondegenerate. �

Remark 3.7. Theorem 3.6allows us to reinterpret(3.7). Namely, suppose(F → M →
B, ξ) is a contact fiber bundle andH(ξ) is the corresponding contact connection.Suppose
the holonomy group G ofH(ξ) is a finite-dimensional Lie group. ThenM is an associated
bundle for a principalG-bundleG→ P → B andH(ξ) is induced by a connectionA on
P . Also, the action ofG on a typical fiber(F, ξF ) is contact and co-orientation preserving.
Then byTheorem 3.6, the distributionξ is a contact structure if and only ifA is fat at the
points of the image of the moment mapΨ : (ξF )◦+ → g∗ associated to the action of the
holonomy group on a typical fiber.

In general this gives us aformal interpretation of(3.7) as fatness of the connection
on the principalG-bundleP → B, whereG is the group of co-orientation preserving
contactomorphisms Diff+(F, ξF ) andP is the “frame bundle” of the fiber bundleM → B.

Remark 3.8. SupposeF is a manifold with an action of a Lie groupG and αF is a
G-invariant 1-form onF . Then a choice of a connection 1-formA on a principalG-bundle
G→ P → B defines a 1-formαM = αM(A, αF ) on the associated bundleM := P ×G F

such thatαM restricted to each fiber ofM → B is αF :
Define a moment mapΨαF : F → g∗ by

〈ΨαF (f ),X〉 = αF (XF)

for all X ∈ g, whereXF denotes the vector field induced byX onF (cf. (3.5)). It is easy to
check that the 1-formα onP × F given by

α(p,f ) = 〈ΨαF (f ), Ap〉 + (αF )f

is basic relative to the diagonal action ofG onP × F :

g · (p, f ) = (p · g−1, g · f ).
(SinceP is a principalG-bundle, the natural action ofGonP is a right action:(g, p) �→ p·g.
The diagonal action ofG above is a left action. This matters because of the signs below.)
Now, for anyX ∈ g,

ι(XP×F )α = 〈ΨαF ,A(XP)〉 + ι(XF )αF = 〈ΨαF ,−X〉 + 〈ΨαF ,X〉 = 0.

Sinceα isG-invariant, it descends to 1-formαM onM.
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By Theorem 3.6, if αF is a contact form and if the connectionA is fat at the points of
ΨαF (F ), thenαM is a contact form. Moreover, in this caseξ = kerαM is precisely the
distribution onM defined byEq. (2.3).

In the rest of the paper we discuss two applications ofTheorem 3.6—K-contact fiber
bundles and contact cross-sections.

4. Application 1: K-contact fiber bundles

Definition 4.1. Let (F, ξ) be a contact co-oriented manifold. It isK-contactif there is a
metricg onF such that

1. the unit normaln to the contact distributionξ, which is defined by the metricg and the
co-orientationξ◦+ ⊂ ξ◦ of ξ, is Killing, i.e.Lng = 0;

2. the contact formαg given byαg = g(n, ·) is compatiblewith g in the sense that

dαg|ξ = (g|ξ)(·, J ·) (4.1)

for some complex structureJ on ξ with J∗(g|ξ) = g|ξ.
We will refer to the triple(F, ξ◦+, g) as aK-contact structureand tog as aK-contact metric
on (F, ξ).

Note that the vector fieldn in the definition above is the Reeb vector field of the contact
form αg.

Remark 4.2. Given a contact formα on a manifoldF , we can easily find a metricg on
F such that the Reeb vector fieldRα of α is unit and normal toξ = kerα and such thatα
andg are compatible ((4.1)holds). IfRα happens to be Killing with respect tog theng is a
K-contact metric.

We now relate, following Yamazaki,K-contact structures on compact manifolds and
contact torus actions (cf.[9, Proposition 2.1]).

Proposition 4.3. A compact contact co-orientable manifold(F, ξ) admits a K-contact met-
ric g if and only if there is an action of a torus T on F preservingξ and a vector X in the Lie
algebrat of T so that the function〈Ψ,X〉 : ξ◦+ → R is strictly positive. HereΨ : ξ◦+ → t∗
is the moment map associated with the action of T on(F, ξ).

Proof. Suppose there is an action of a torusT on(F, ξ)andX ∈ t such that〈Ψ,X〉 : ξ◦+ → R

is strictly positive. Since the action ofT preservesξ, the lifted action ofT onT ∗F preserves
ξ◦. SinceT is connected, the lifted action preserves a componentξ◦+ of ξ \F . It follows that
for any 1-formβ onF with kerβ = ξ, the averagēβ of β overT still satisfies kerβ = ξ

(if the action of a group does not preserve the co-orientation ofξ, the average ofβ may
be zero at some points). Hence we may assume that there is aT -invariant 1-formα′ with
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α′(F ) ⊂ ξ◦+. Now let

α = (〈Ψ ◦ α′, X〉)−1α′.

Then, sinceι(XF )α
′ = 〈Ψ ◦ α′, X〉 (cf. Eqs. (3.4) and (3.5)), ι(XF )α = 1. ThenTF =

ξ⊕RXF and the splitting isT -equivariant. We use the splitting to define the desired metric
g. We declareξ andRXF to be orthogonal and defineg(XF ,XF) = 1, so thatXF is a
unit normal toξ. Onξ we choose aT -invariant complex structureJ compatible with dα|ξ
and defineg|ξ(·, ·) = dα|ξ(·, J ·). Theng is T -invariant and henceLXF g = 0. Thusg is a
K-contact metric on(F, ξ).

Conversely, if there is a metricg on F making(F, ξ) K-contact, the flow{exp(tn)} of
the unit normal vector fieldn to ξ is a 1-parameter group of isometries Diff(F, g). Since
F is compact Diff(F, g) is a compact Lie group. Hence the closureT = {exp(tn)} is a
compact connected abelian Lie group, i.e. a torus. LetX be the vector in the Lie algebra
t of T with XF = n. Let α = g(n, ·). Then 〈Ψ ◦ α,X〉 = ι(XF )α = g(n, n) = 1.
Hence〈Ψ,X〉 > 0. �

Theorem 4.4. Let (F, (ξF )◦+, gF ) be a compact K-contact manifold. LetG ⊂ Diff (F, gF )
be a group of isometries preserving(ξF )◦+. Let Ψ : (ξF )◦+ → g∗ denote the associated
moment map. Suppose a principal G-bundleP → B has a connection1-form A which
is fat at the points of the imageΨ((ξF )◦+). Then there exists a K-contact structure on the
associated bundleM = P ×G F compatible with the contact formαM = αM(A, αgF ) (the
form constructed inRemark 3.8). HereαgF is the contact form on F defined bygF and
(ξF )◦+.

Proof. As we saw above the isometry group Diff(F, gF ) is a compact Lie group. Also
the flow{exp(tn)} of the unit normaln is a subgroup of the isometry group whose closure
T = {exp(tn)} is a torus. Since the normaln is G-invariant,T andG commute inside
Diff (F, gF ). Therefore, the torusT acts naturally onM = P ×G F : a · [p, f ] = [p, a · f ]
for all (p, f ) ∈ P × F and alla ∈ T .

The Reeb vector fieldR of αM is tangent to fibers ofM → B, henceR|Fb is the Reeb
vector field ofαM |Fb for any fiberFb. Consequently,R is the vector field induced onM
by theG-invariant vector fieldn ∈ χ(F )G. Hence the flow ofR generates the action
of T on M. Therefore, theK-contact metricg on M has to beT -invariant. Conversely,
anyT -invariant metricg onM compatible withαM is K-contact. The action ofT onM
preserves the horizontal subbundleH ⊂ TM defined byA, and it preserves the symplectic
structure dαM |H. Choose aT -invariant complex structureJH onH compatible with dαM |H.
ThegH := dαM |H(JH·, ·) is aT -invariant metric onH. TheT × G-invariant metricgF
on F gives rise to aT -invariant metricgV on the vertical bundleV of M → B. The
metric gM := gH ⊕ gV is a T -invariant metric onM compatible withαM (recall that
ξ := kerαM = H⊕ (P×G ξ

F )). Moreover, the Reeb vector fieldR of αM is unit, normal to
ξ and Killing with respect togM . Thus(M, ξ◦+, gM) is aK-contact structure onF → M =
P ×G F → B. �

Remark 4.5. There is no natural way to make the mapP ×T F → B into a Riemannian
submersion relative to theK-contact metric onP ×T F produced byTheorem 4.4. Indeed,
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if we trace through the construction ofgM we will see that for any point [p, f ] in the fiber
Fb of P ×G F → B we have

(gH)[p,f ](v
#, u#) = 〈ΨαgF (f ),dAp(v

#, JHu
#)〉 (4.2)

for any tangent vectorsu, v ∈ TbB. Here on the left-hand sidev#, u# denote horizontal lifts
toH[p,f ] . On the right-hand sidev#, u# denote horizontal lifts to kerAp ⊂ TpP . Thus the
horizontal part of the metricgM depends on the points in the fiberFb!

Example 4.6. LetΣ be a compact Riemann surface andω ∈ Ω2(Σ) an area form which is

integral, i.e.
∫
Σ
ω ∈ Z. LetS1 → P

π→Σ be the corresponding principal circle bundle with
a connection 1-formA ∈ Ω(P,R)S1

satisfying dA = π∗ω. ThenA is fat onR \ {0}. Letα
be a contact form on a manifoldF such that the flow of the Reeb vector fieldRα is periodic.
For example, we may takeF to be the odd-dimensional sphereS2n−1 = {z ∈ C

n|‖z‖2 = 1}
with the standard contact formα = √−1(

∑
zj dz̄j − z̄j dzj)|S2n−1. Or we can takeF to

be the co-sphere bundleS(T ∗Sk) of a sphere with the contact form defined by the standard
round metric onSk. Then the associated bundleP ×S1 F is aK-contact manifold.

The next example is a slight generalization. It producesK-contact manifolds first con-
structed by Yamazaki by a “fiber join”[7].

Example 4.7. For ann-tuple a = (a1, a2, . . . , an), aj > 0, the ellipsoidEa := {z ∈
C
n|∑ aj|zj|2 = 1} � S2n−1 is a hypersurface of contact type inCn. The correspond-

ing contact formαa is given byαa := √−1(
∑

zj dz̄j − z̄j dzj)|Ea . For a generica, the
Reeb vector field ofαa generates the action of then-torusT

n. The image ofEa under the
αa-moment map is the simplex

∆a = {(t1, . . . , tn) ∈ R
n � Lie(Tn)∗|

∑
ajtj = 1, tj ≥ 0}.

Supposeω1, . . . , ωn are integral symplectic forms on a compact Riemann surfaceΣ such
that

∑
tjωj is nondegenerate for allt = (t1, . . . , tn) ∈ ∆a. For example, we may pick

one integral area formω and letωj = ω for all j. Then the principalTn-bundleP over
Σ defined byω1, . . . , ωn has a connection 1-formA = (A1, . . . , An) ∈ Ω(P,Rn)T

n
with

dA = (π∗ω1, . . . , π
∗ωn). The connectionA is fat at the points of∆a. Therefore,P ×Tn Ea

has aK-contact structure. It is anS2n−1-bundle overΣ.

5. Application 2: contact cross-sections

Let M be a manifold with an action of a compact connected Lie groupG preserving
a (co-oriented) contact structureξ on M. Then there exists aG-invariant 1-formα with
kerα = ξ. (Pick any 1-formα′ with kerα′ = ξ and average it overG. Sinceξ isG-invariant
and sinceG is connected the averaged formα satisfies kerα = ξ.) Denote byΨα : M → g∗
the associatedα-moment map:〈Ψα(x),X〉 = αx(XM(x)) for all x ∈ M and allX ∈ g; cf.
(3.5).
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SinceG is compact, for any pointµ ∈ g∗ the isotropy Lie algebragµ of µ has a
Gµ-invariant complementm in g:

g = gµ ⊕m (Gµ-equivariant). (5.1)

Moreover, we may choosem so thatµ|m = 0, i.e.µ ∈ m◦. (Pick aG-invariant metric ong
and letm = g⊥µ .) Then a largeR>0-invariant open subsetS ofm◦ is a slice for the coadjoint
action ofG atµ. For example, ifµ is generic,gµ is a Cartan subalgebra andS is a Weyl
chamber (after some identifications).

We will need (see[6, p. 37]for a proof):

Lemma 5.1. For anyη ∈ S the pairing

ωη : m ×m→ R, (X, Y) �→ 〈η, [X, Y ]〉.
is nondegenerate.

Theorem 5.2. Let(M, ξ = kerα,Ψα : M → g∗) be a contact G-manifold,µ ∈ g∗ a point,
m ⊂ g a subspace defined by(5.1)withµ ∈ m◦ andS ⊂ m◦ anR

>0-invariant slice for the
coadjoint action of G. Define

R = Ψ−1
α (S).

Then

1. R is a contact submanifold of(M, ξ) which is independent of the choice of the contact
formα used to define it.

2. G ·R is an open subset of M diffeomorphic to the associated bundleG×Gµ R.
3. For anyx ∈ R

ξx = mM(x)⊕ (ξx ∩ TxR). (5.2)

In particular, the restriction of the contact structureξ toG ·R is uniquely determined
by theGµ-invariant contact structureξR := ξ|R ∩ TR.

Remark 5.3. We will refer to the contact submanifold(R, ξR) of (M, ξ) as the contact
cross-section.

Proof of Theorem 5.2. SinceΨα is equivariant, the image dΨα(TxM) contains the tangent
space to the coadjoint orbitG · Ψα(x). SinceS is a slice, we have

Tηg
∗ = TηS+ Tη(G · η)

for anyη ∈ S. HenceΨα is transverse toS, and consequently

R := Ψ−1
α (S)

is a submanifold. Also, by equivariance ofΨα,R isGµ-invariant. SinceS is a slice,G · S
(�G×Gµ S) is open ing∗. HenceG ·R = Ψ−1

α (G · S) is open inM. Similarly, it is easy
to see thatG ·R = G×Gµ R.
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If α′ is anotherG-invariant contact form givingξ its co-orientation, thenα′ = ef α
for some functionf ∈ C∞(M). Consequently,Ψα′ = efΨα. SinceS is R

>0-invariant,
Ψ−1
α′ (S) = Ψ−1

α (S). Thus the cross-sectionR does not depend on the choice of the contact
form.

Note in passing that dimR = dimM − dimG · µ, hence odd. In particularR can be
contact.

We next argue that

mM(x) := {XM(x)|X ∈ m}
is contained in the contact distributionξx for all x ∈ R. Indeed for anyX ∈ m

αx(XM(x)) = 〈Ψα(x),X〉 ∈ 〈S, X〉 ⊂ 〈m◦, X〉 = {0},
hencemM(x) ⊂ ξx.

Fix x ∈ R. SincemM(x) ⊂ ξx and sinceTxR ⊕ mM(x) = TxM, we cannothave
TxR ⊂ ξx. Therefore,TxM = TxR+ ξ, and consequently

ξRx := TxR ∩ ξx
is a codimension one subspace ofTxR. The rest of the proof is an argument thatξR is
indeed a contact structure onR. In the mean time observe that we have proved(5.2).

We first argue that the restriction dα|mM(x) is nondegenerate for allx ∈ R. For this we
first compute dα on the tangent space of aG-orbit in M. Let x ∈ M be a point,X, Y ∈ g
two vectors,η = Ψα(x). Then (omitting evaluation atx) we have

dα(XM, YM) = XM(α(YM))− YM(α(XM))− α([XM, YM ]).

Now

XM(α(YM)) = XM(〈Ψα, Y〉) = 〈dΨα(XM), Y〉.
So

XM(α(YM))(x) = 〈(dΨα)x(XM(x)), Y〉 = 〈Xg∗(η), Y〉 = −〈η, [X, Y ]〉,
where the second equality holds by equivariance of the moment mapΨα. Similarly,

YM(α(XM))(x) = 〈η, [X, Y ]〉.
Since [XM, YM ] = −([X, Y ])M (we are dealing with a left action!), we have

−α([XM, YM ])(x) = 〈η, [X, Y ]〉.
Putting everything together we get

dα(XM, YM)(x) = −〈η, [X, Y ]〉 − 〈η, [X, Y ]〉 + 〈η, [X, Y ]〉 = −〈η, [X, Y ]〉.
It now follows fromLemma 5.1that for anyx ∈ S the restriction dα|mM(x) is nondegenerate.

We next argue that for anyx ∈ R and anyv ∈ ξRx = (TxR∩ ξx) and anyX ∈ m we have
dαx(XM(x), v) = 0. LetV be a section ofξR → R with V(x) = v. Then dα(V,XM) =
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V(α(XM)) − XM(α(V)) − α([V,XM ]). Now α(V) = 0 andα([V,XM ]) = 0 (sinceξ is
G-invariant [XM,V ] is a section ofξ). SinceV is tangent toR, we have(dΨα)x(V(x)) ∈
TΨα(x)S = m◦ for all x ∈ R. Therefore,V(α(XM))(x) = 〈(dΨα)x(V(x)),X〉 ∈ 〈m◦, X〉 = 0
for all x ∈ R sinceX ∈ m. Thus dαx(XM(x), v) = 0. Consequently

ξRx ⊂ mM(x)(dα|ξ).
By dimension count the above inclusion is an equality.

Since dα|mM(x) is nondegenerate, dα|ξRx is nondegenerate as well for allx ∈ R.
Thusα|R is a contact form,ξR = ker(α|R) is a contact structure andR is a contact
submanifold. �
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