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Abstract

We define contact fiber bundles and investigate conditions for the existence of contact structures
on the total space of such a bundle. The results are analogous to minimal coupling in symplectic
geometry. The two applications are constructiorke€ontact manifolds generalizing Yamazaki's
fiber join construction and a cross-section theorem for contact moment maps.
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1. Introduction

A few years ago | came across an interesting paper by Yampiakiwhich K-contact
manifolds were constructed “by fiber join”. The contact manifolds in question were odd-
dimensional sphere bundles over Riemann surfaces. These bundles were associated to cer-
tain principal torus bundles, and the choice of a contact form on the total space involved a
choice of a connection on the torus bundle whose curvature had to satisfy certain nonde-
generacy condition. It all very much looked like a contact version of Sternberg’s minimal
coupling construction in symplectic geometry. The goal of the present paper is to explain
why this is indeed the case. In order to do this systematically | felt it is necessary to first sort
out the definition of a contact fiber bundle and to investigate conditions for the existence
of contact structures on the total space of such a bundle. Of course, since any co-oriented
contact manifold is the quotient of a symplectic cone by dilations and since any symplectic
cone is a symplectization of a contact manifold, one can argue that contact fiber bundles are
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simply symplectic fiber bundles with fibers being symplectic cones. However, it seems use-
ful to study the matter completely in contact terms. For example, the notioKed@ntact
structure does not translate naturally into symplectic terms.

Remark 1.1. Inthis paper we assume that all contact structures are co-oriented. Recall that
a contact structurgon a manifoldV is co-orientedf there exists a 1-form with kera = &.
Equivalently¢ is co-oriented if its annihilato§® c 7*M is an oriented line bundle. That

is, the line bundle minus the zero sectigh) M, has two components and we have single
out one of the components, call&t. We thus may think o as a co-orientation of.

Note that the image af : M — TM with kera = & singles out one of the components

of &\ M. The same remark applies to any codimension 1 distribitiom A/, not just to
contact ones. That is, we only consider co-oriented distributions.

A note on notationlf U is a subspace of a vector spaéewe denote its annihilator in
the dual vector spacgé* by U°. ThusU° = {¢£ € V*|¢|y = 0}. We use the same notation
for distributions.

Throughout the paper, the Lie algebra of a Lie group denoted by a capital Roman letter
is denoted by the same small letter in the fraktur font: ghdenotes the Lie algebra of a
Lie groupG etc. The vector space dualgas denoted by*. The identity element of a Lie
group is denoted by 1. The natural pairing betwgemdg* is denoted by, -).

When a Lie grougG acts on a manifold/ we denote the action by an element G
on a pointx € M by g - x; G - x denotes the5-orbit of x and so on. The vector field
induced onM by an elementX of the Lie algebrag of G is denoted byX,, (that is,
Xy (x) = (d/df)|o(exptX) - x) and the diffeomorphism induced lgye G on M by gy,.
Thus in this notatiorg - x = g (x). The isotropy group of a point € M is denoted by
G,; the Lie algebra of5, is denoted by, and is referred to as the isotropy Lie algebra
of x. Recall thaty, = {X € g| Xy (x) = 0}.

If X is a vector field and is a tensor, thell xt denotes the Lie derivative af with
respect tax.

If P is a principalG-bundle then p, m] denotes the point in the associated bundle
P xg M = (P x M)/G which is the orbit of(p, m) € P x M.

2. What isa contact fiber bundle?

Let F be a manifold with a contact distributigi c TF. Since we assume that all contact
structures are co-oriented, there is a 1-farfn e 21(F) with kera¥ = £ which gives
£ its co-orientation. Denote the group of co-orientation preserving contactomorphisms of
(F, &) by Diff . (F, £F). That is:

Diff . (F, &) = {p : F > Flp*af = €lal" forsomeh € C®(F)).
Definition 2.1 (provisional). Lei(F, £) be a contact manifold. A fiber bundie — M5B

is contactif the transition maps take values in Dift F, 7). That is, supposg/;} is a cover
of B by sufficiently small sets. Then there exist trivializatigns 7—1(U;) — U; x F such
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that for all indices, j with U; N U; # ¢ and for everyp € U; N U, the diffeomorphisms
¢jo ¢ wxr : F — F are elements of Diff (F, &¥).

Remark 2.2. Itfollows from the definition that for every poibte Bthe fiberFy, := 7~ 1(b)

has a well-defined (co-oriented) contact structfreNamely letU; be an element of the
cover containing. Letpry : U; x F — F denote the projection on the second factor. Then
a; = (pra o ¢pp)*af € Q=1 (U))) is a 1-form with the restriction;| s, to the fiber being
contact. Moreover, ib is also inU; then kefw;|r,) = ker(a;|r,), so the fiberF;, has a
well-defined contact structugg. We let

g =[Jg v (2.1)

beB

where&Y is a codimension one subbundle of the vertical bundle= ker(dr : TM —
TB).

Lemma2.3. Let F — M- B be a contact fiber bundle as Definition 2.1 There exists
a 1-forma on M such thatkerae) NV = &, where) c TM is the vertical bundle ang’

is the bundle defined .1). In other wordsa contact fiber bundle has a globally defined
1-form that restricts to a contact form on each fiber

Proof. Let {U;} be a sufficiently small open cover @&. Choose a partition of unity;
subordinate t¢U;}. Lete; € 21(x~1(U;)) denote the 1-forms constructedRemark 2.2
Thena = ) ;(*p;)a; is a globally defined 1-form o with (kera) N T(F},) a contact
structure on each fibef,. O

Lemma 2.4andCorollary 2.6form a converse themma 2.3 Recall that aconnection
on a fiber bundler : M — B is a choice of a complemefi in TM to the vertical bundle
VofrsothatTM=H & V.

LemmaZ24. LetF — M- B be afiber bundle with a co-oriented codimensiaistribu-
tion & ¢ TM such that for each fibefF, the intersectior§ N T(F}) is a contact distribution
on F,. Then

1. there is a natural connectio. = # (&) on the fiber bundl¢ — M5 B;
2. the parallel transport with respect t& (when it existspreserves the contact structure
on the fibers. Additionally parallel transport is co-orientation preserving

Proof. Since£ is co-oriented there is a 1-formon M with kere = &. Letw = dae. Since
fiber restrictionsy|r, are contacty|v is nondegenerate, whegeis the intersection of the
distribution& with the vertical bundlé). We defineH to be thew-perpendicular t&” in
¢, w):

H=(&"".

Note that ifo’ is another 1-form with ke’ = £ giving £ its co-orientation then’ = e/«
for some functionf € C*(M). Hence d&'|; = ef(da|g) and consequently the definition
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of # does not depend on the choicenofSincew|¢ is nondegenerate:
E=¢"dH (2.2)

and since&” = £ NV, H is a connection ot : M — B.

We now argue that parallel transport definedtbpreserveg®. (Here we tacitly assume
that the parallel transport exists, i.e. that the connectiois complete. If the fiber is
compact therH is complete, but this need not be true in full generality. If the parallel
transport does not exist globally, it does exist locally: one can parallel transport for short
times small pieces of the fibers. The statement of the lemma then becomes messy. And
so we gloss over this point here and elsewhere in the papers heta vector field on
B, let v denote its horizontal lift taW with respect toi: for eachm e M, v*(m) is the
unique vector field irH,, C T,,M with dz(v¥(m)) = v(z(m)). Let w be a section of".
We will argue that the Lie bracketf, w] is also a section of’. Sincev” is a horizontal
lift and w is vertical, the bracketf, w] is also vertical: {*, w] € (V). By definition
of #,0 = w(V*, w) = da(v*, w). Sincev”, w € 1), we haver(w)a = 0 = ((V)a.
Therefore, 0= da(v*, w) = v¥(a(w)) — w@®®) — «(v*, w]). Hencea([v*, w]) = 0,
i.e. ¥, w] e & Consequently ff, w] € T(V) N I = NV N £ = (&), and so the
parallel transport with respect #d preserveg”.

Finally we argue that the parallel transport also preserves the co-orientation. This is a
continuity argument. Ley : [0, 1] — B be a pathP,;) : F,o — Fys be the parallel
transport along. Since @y, (ker(e|r, ) = ker(a|r,, ), we have

Py @lr,) = fi(@lr,g)

for some nowhere zero functigh e C*°(F,()) depending continuously anSince fo =
1>0,f, >0forallr € [0, 1]. O

Definition 2.5. We will refer to the connectio{ = H(¢) defined inLemma 2.4as a
contact connectian

Corollary 2.6. Let F — M5 B be a fiber bundle with a co-oriented codimensibn
distribution& c TM such that for each fibeF}, the intersectiore N T(Fp) is a contact
distribution onF}, and the associated contact connection is complEtenF — M5B
is a contact fiber bundle in the senselfinition 2.1

Proof. Use parallel transport with respect to the contact connectoto define local
trivializations of the fiber bundle : M — B. O

Remark 2.7. Corollary 2.6shows that we may alstefinea contact fiber bundl¢o be a
fiber bundleF — M- B with a co-oriented codimension 1 distributiorc TM such that
&N T(Fp) is a contact structure on each fikley of . From now on we will take this as our
definition of a contact fiber bundle as opposedefinition 2.1

We finish this section by pointing out that contact fiber bundles as defined in the remark
above are easily constructible as associated bundles.
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Lemma2.8. Let(F, £F) be a contact manifold with an action of a Lie group G preserving
the contact structuré’ and its co-orientation. Le¢ — P — B be a principal G-bundle.
For any (G-invariant) connectiori{ C TP the distribution

Em i =HD (P xg &) (2.3)

makesV = P x F into a contact fiber bundle. Hefé c TMis the connection o — B
induced byH.

Proof. See proof ofTheorem 3.6 O

3. When isacontact fiber bundle a contact manifold?

We now consider the conditions on a contact fiber buiélle> M- B, £ ¢ TM) that
ensure that is a contact structure on the total spae We will see that the question is
related to the fatness of the contact connecti(¥) and the image of the moment map for
the action of the structure group ®f: M — B on the fiberF.

Recall that the curvature of a connectifinon a fiber bundle — M- B is a 2-form
Curvy on B with values in the vector fields on the fiber: fary € T, B and vector fields
v, w € x(B) with v(b) = x, w(b) =y

(Curv)p(x, y) = [v*, w] = [v, w]” € x(F),

where, as ir.emma 2.4# denotes the horizontal lift with respectb

Proposition 3.1. Let (F — M—”>B,§ C TM) be a contact fiber bundle{ = H (&) the
contact connectiorand €° C T*M the annihilator ofé. The distributioné is a contact
structure on M iff for allm € M and all0 # n € &, :

(n, [(Curvy)p(-, )](m)) : T, B x T, B — R isnondegenerate (3.1

whereb = w(m).

Proof. Choose a 1-form on M with kera = £. The distribution¢ is contact iff dy|¢
is nondegenerate. Now = ‘H @ &Y (cf. (2.2)) and dv|¢» is nondegenerate singé” —

M5 B, £) is a contact fiber bundle. Consequenglys contact iff dx|y; is nondegenerate.
Now fix a pointm € M and two vectors, y € H,, C T,, M. Choose vector fields, w on

B with v*(m) = x, w*(m) = y (# denotes the horizontal lift). Then, omitting evaluations
atm, we have

dar(x, y) = de(v”, w¥) = v*(@(w®)) — w* (@) — a(v*, w"])
=0-—0—a(v*, w"] = [v, w]™,

sincex(u™) = 0 for any vector field: on B. Since(Curvy) (v, w) = [v*, w#] — [v, w]#, we
have

(Dot | #,,) (x, y) = Do (x, ¥) = (@, [(CUNVY) 2y (A (x), dr())] (m)).
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Forany 0+ n € &, there iss # 0 such tha) = say,. Therefore, d,, |7, is nondegenerate
iff (3.1)holds for any G n € &;,. O

We now reinterpre€3.1)in terms of contact moment maps and fatness.

3.1. Contact moment maps

Consider a manifoldF with a co-oriented contact structugg’. As mentioned in
Remark 1.1the punctured annihilator bundlef)° \ F has two componentgt©)°\ F =
M3 u(—=(EN3). Consider the Lie algebra of contact vector fieyd#, £°) on F. Recall
that the contact vector fields are in one-to-one correspondence with sections of the line
bundleTF/¢ — M: the mapy(F, &) — I(TF/€), v —~ v + & gives the bijection. Thisis a
standard fact. See for examgtg. There is a natural pairing between the points of the line
bundle(£¥)° — F and the contact vector fields:

EN x x(FEFY =R, (£m),v) = (0, v(f)) (3.2)

forall fe F,ne ((sF)O)f andv € x(F, &), where on the right the pairing is between a
covectom € (SF)f C TFF and a vectop(f) € T¢F.

Suppose a Lie algeé@acts onF by contact vector fields, i.e. suppose there is a rep-
resentatiorp : g — x(F, &) (or an anti-representation; this is the usual problem with left
actions and Lie brackets defined in terms of left invariant vector fields). Then the moment
map¥ : x(F, &* > (F)° — g* should be the transpose pfrelative to the pairing3.2)
and the natural pairing* x g — R. However, for various reasons (see below) in the case
of co-oriented contact structures, it is more convenient to define the contact moment map
for pasamapy : (6F) — g*

(WA, X) = {(fm), p(X)) = (n, p(X)(f)). (3.3)

Note that(sF)i is a symplectic submanifold of the cotangent bunfiig”. Suppose the
anti-representatiop : g — x(F, & comes from a (left) action of a Lie grou@ on F
preservings and its co-orientation (with Lie algebra 6f beingg). In this case we write
X for p(X). The moment mag’ : (gF)Sr — g* is simply the restriction thﬁ;F)Sr of the
moment mapd : T*F — g* for the lifted action ofG on T* F. The action ofG preserves
£F and its co-orientation if and only if the lifted action preser@@)j’r. A G-invariant
1-formaf on F with kera/ = &F is a G-equivariant section of the bundi¢’)s. — F.
Therefore, the composition

U =Woal : F— g (3.4)
is aG-equivariant map. We will refer to it as the -moment mapNote that by definition
(Tor, X)(f) = (@f, Xrp(f)) = (X p)a")(f) (3.5)

forall X € gand all f € F. This is the “classical” definition of a contact moment map
(cf. [1-3]). It depends on a choice of a contact form, unlike (gF)i — g*, which is
“universal.”
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Remark 3.2. The pairing(3.2) suggests a different way of looking Btroposition 3.1
Denote byt? the contact structure on the fib&y, : & = £ N T(F;). Then for a point
m € Fjp, a covecton € (5”);’” and a vector field € x(F}, &) we have

((m, n), v) = (n, v(im)) € R.

Note that the connectioK allows us to identifye° with [, (£7)° and consequentl§; =
Ub(éb)i- Consequently, the curvature Cyyrofthe connectiofi{ gives rise to awell-defined
skew-symmetric forna, on the vector bundig/ — &5 which is the pull-back o — M
by the projectiorp : £ — M. Namely, sincei{ >~ 7*(TB), # = (7 o p)*(TB). So given
me M,n e (&), andu, v € T, B, whereb = n(m),

(@2) (mpy (u, v) 1= ((m, 1), (Curv)p(u, v)) = (n, [(CUrv)p (e, V)] (m)). (3.6)

ThusProposition 3.Jasserts:

The distributiort is a contact structure oV if and only if oy defined above is
a symplectic form on the vector bundie— &, (3.7)

3.2. Fatness

Definition 3.3 (Weinstein[6]). A connection 1-formA on a principalG-bundleG —
PS5 Bis fat at a point € g* if for any point p € P the bilinear mapu o (Curvy), -
H? X Hﬁ — R is nondegenerate, where Cuyris the curvature of the connection forn
and?—tj} = ker(A, : T,P — g) is the associated horizontal distribution.

Remark 3.4. If Aisfatatu € g*, itis fat at every point of the SG{AdT(g)(au)|g € G,
a > 0} (here and elsewhere Adenotes the coadjoint action).

Remark 3.5. Fatness is an open condition. Thuglifs fat atu, it is fat at every point of a
G x Rt-invariant neighborhood qf in g*.

Theorem 3.6. Suppose a Lie group G acfsn the left on a manifold F preserving a
contact distributiore© and its co-orientationlet ¥ : (g")j’r — g* denote the associated
moment mapLet G — P — B be a principal G-bundleGiven a connectiori-form
A on P, there exists a co-oriented codimensibulistribution & on the associated bundle
M = P xg F — B which intersects the tangent bundle of each fibgrin a contact
distribution isomorphic t&” . Explicitly

E=H& (P xgth), (3.8)

where? is the connection on : M — B induced by A
Moreover the distributioné is a contact structure on M if and only if the connection A
is fat at the points of the points of the image(gF)ir).
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Proof. Since the action of; on F preserveg’ and its co-orientation
§i=Pxg§"

is a well-defined co-oriented subbundle of the vertical bubtite P x (TF) of M — B.
The connection 1-formi defines a complemert to Vin TM. Therefore, the distribution
& on M defined by(3.8) is a co-oriented codimension 1 distribution. By construction, for
each fiberF;, we havet N T(F),) = §V|Fb ~ £F (More precisely, for each point € P we
have an embedding, : F — M, (,(f) = [p, f] (where [p, f] € P xg F denotes the
image of(p, f) € P x F). Thend, (") = €|, whereb = 7(p).)

Now suppose that is fat at the points OW((EF)i). By Proposition 3.-andRemark 3.2
it enough to show that for any[ f 1] € P x¢ (£F)° = &7, the pairing

(@2 qp, ) = ([P, £ 0], (Curvg)p (-, N p, D) : TpB x TyB — R

is nondegenerate (whebe= ([ p, f])).

The curvature Cury : #4 x H4 — g of A defines a 2-fornCurv, on B with values in
the adjoint bundleP x g g. To write outCurv, € £2%(B, P x¢ g) explicitly we need a bit
of notation. For a poink € B and vectors;, y € T, B denote the horizontal lift af andy
to /) by x* andy”, respectively. Then

(Curva)p(x. y) = [p. (Cunva) (. )] € P g g

forany p € P in the fiber of P — B aboveb.

SinceG acts onF by contact transformations, there is an (anti-)representation —
x(F. %), p(X) = X, from the Lie algebra of G to contact vector fields of'. Recall:
the moment mag’ : (.;%F)i — g is the adjoint ofp in the sense that

((Fm, p(X)) = (P(fn), X)

forall f € F,n € (EF)i. X € g, where on the right the pairing is the natural pairing
g* x g — Rand on the left it is the pairin{B.2).
Sincep and¥ are equivariant, they induce maps of associated bundles

V:iPxg(ENG— Pxgg'  Wdp L) =[p. W]
and

p:Pxge— Pxg(FED,  pp, XD =[p, p(X)].
The two pairings above give rise to fiber-wise pairings:

(PxGgg)®(Pxg9) - PxgR=BxR, [p,u]l®[p,X]+— ((p), (u X))
and

P xg (M3 x x(F 7)) > PxgR=B xR,

[p, (), v)] = (@(p), (n, v())),

whererr now denotes the projectiab — B. The maps and¥ are adjoint with respect to
the two fiber-wise pairings.
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Finally, the mapp relates the two curvature§urvy € 22(P xg g) and Cury; €
2%(B, P x¢ x(F. £M)):

p o Curvy = Curvy.
Putting together the above remarks we get

(021, fn) . v) = [, £ 1], (Curvy)p(u, v))
= ([p. £ n]. po (CUrVA)y(u, v)
= (Z([p. £nD). (CUNA),(u, v))
= (W(£ 1), (Cuna) p (u'y, vF))

forall [p, fn] € P x¢ (SF)i and anyu, v € T,B (b = n([p, f]) € B). ThusA is fat at
the points oftI/((éF)ir) if and only if oy is nondegenerate. O

Remark 3.7. Theorem 3.@llows us to reinterpret3.7). Namely, supposeéF — M —
B, &) is a contact fiber bundle ar(§) is the corresponding contact connectiSuppose
the holonomy group G d¥.(¢) is a finite-dimensional Lie groughenM is an associated
bundle for a principatG-bundleG — P — B andH#.(§) is induced by a connectioa on
P. Also, the action of5 on a typical fiber F, £©) is contact and co-orientation preserving.
Then byTheorem 3.6the distributiont is a contact structure if and only if is fat at the
points of the image of the moment map: (gF)j’r — g* associated to the action of the
holonomy group on a typical fiber.

In general this gives us Bormal interpretation of(3.7) as fatness of the connection
on the principalG-bundle P — B, whereG is the group of co-orientation preserving
contactomorphisms Diff (F, £¥') and P is the “frame bundle” of the fiber bundi¢ — B.

Remark 3.8. SupposeF is a manifold with an action of a Lie groug andar is a
G-invariant 1-form onF. Then a choice of a connection 1-fornon a principalG-bundle
G — P — Bdefines a 1-fornary, = ap (A, ar) on the associated bunddé .= P xg F
such thatr,, restricted to each fiber @f — Bisap:
Define a moment mag, . : F — g* by

(War (), X) = ar(XF)
forall X € g, whereX ¢ denotes the vector field induced iyon F (cf. (3.5)). Itis easy to
check that the 1-formx on P x F given by

A(p,f) = (Yar (), Ap) + (aF) s
is basic relative to the diagonal action@fon P x F:

g (p.NH=p-g g f
(SincePis aprincipalG-bundle, the natural action 6fon P is aright action(g, p) — p-g.

The diagonal action of; above is a left action. This matters because of the signs below.)
Now, for anyX € g,

t(Xpxr)a = (Yop, A(Xp)) + 1(XP)ar = (Wap, —X) + (Vap, X) = 0.

Sincew is G-invariant, it descends to 1-foroy, on M.
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By Theorem 3.6if af is a contact form and if the connectianis fat at the points of
¥, (F), thenay is a contact form. Moreover, in this cage= keray, is precisely the
distribution onM defined byEg. (2.3)

In the rest of the paper we discuss two application3toéorem 3.6—-K-contact fiber
bundles and contact cross-sections.

4. Application 1: K-contact fiber bundles

Definition 4.1. Let (F, &) be a contact co-oriented manifold. It &&-contactif there is a
metricg on F such that

1. the unit normak to the contact distributiof, which is defined by the metrigand the
co-orientatiorgS. C &° of &, is Killing, i.e. L,g = 0;
2. the contact forna, given bya, = g(n, -) is compatiblewith g in the sense that

dogle = (gl) (. J) (4.1)
for some complex structurgon & with J*(gle) = gle.

We will refer to the triple(F, &5, g) as aK-contact structurend tog as ak-contact metric
on (F; §).

Note that the vector field in the definition above is the Reeb vector field of the contact
forma.

Remark 4.2. Given a contact fornax on a manifoldF, we can easily find a metrig on
F such that the Reeb vector fieR}, of « is unit and normal t¢ = ker« and such tha&
andg are compatible(é.1) holds). If R, happens to be Killing with respect gatheng is a
K-contact metric.

We now relate, following YamazakiK-contact structures on compact manifolds and
contact torus actions (cf9, Proposition 2.1)]

Proposition 4.3. A compact contact co-orientable manifdlel £) admits a K-contact met-
ric g if and only if there is an action of atorus T on F preservingnd a vector X in the Lie
algebrat of T so that the functiof; X) : £, — R is strictly positive. Herel : £ — t*
is the moment map associated with the action of T/I).

Proof. Suppose thereis anaction of atofuen(F, §) andX e tsuchthaty; X) : &5 — R
is strictly positive. Since the action @fpreserve$, the lifted action off onT* F preserves
&°. SinceT is connected, the lifted action preserves a compogient £\ F. It follows that
for any 1-formg on F with ker 8 = &, the averages of g over T still satisfies ke = &
(if the action of a group does not preserve the co-orientatiop tife average o may
be zero at some points). Hence we may assume that therE-isvariant 1-forma’ with
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o (F) C &5. Now let
a=(Yod, X)) 1.

Then, sinca(Xr)a’ = (¥ o o, X) (cf. Egs. (3.4) and (3.9) 1(Xr)a = 1. ThenTF =
& RXr and the splitting ig-equivariant. We use the splitting to define the desired metric
g.- We declares andRX r to be orthogonal and defing X g, Xr) = 1, so thatXr is a
unit normal to&. On & we choose & -invariant complex structuré compatible with d|¢
and defineg|e(-, -) = dalg(-, J-). Theng is T-invariant and hencé x,. g = 0. Thusg is a
K-contact metric Oi(F, §).

Conversely, if there is a metrig on F making (F, &) K-contact, the flon{exp(tn)} of
the unit normal vector fiela to £ is a 1-parameter group of isometries DIf g). Since
F is compact Diff F, g) is a compact Lie group. Hence the clostre= {exp(tn)} is a
compact connected abelian Lie group, i.e. a torus.X &k the vector in the Lie algebra
t of T with Xp = n. Leta = g(n,-). Then(¥ o o, X) = «(Xp)a = gn,n) = 1.
Hence(¥; X) > 0. O

Theorem 4.4. Let(F, (gF)j, gr) be a compact K-contact manifold. L&tc Diff (F, gr)

be a group of isometries preservimgF)Sr. Letvw : (EF)jL — g* denote the associated
moment map. Suppose a principal G-bun#fle> B has a connectioi-form A which

is fat at the points of the imagé((gF)fL). Then there exists a K-contact structure on the
associated bundl#/ = P x F compatible with the contact forems = ap (A, oy, (the
form constructed irRemark 3.8. Here o, is the contact form on F defined lgy- and
EN4.

Proof. As we saw above the isometry group Diff ¢r) is a compact Lie group. Also
the flow {exp(tn)} of the unit normak is a subgroup of the isometry group whose closure
T = {exp(tn)} is a torus. Since the normalis G-invariant,7 and G commute inside
Diff (F, gr). Therefore, the toru® acts naturally oM = P xg F :a-[p, fl =[p,a- f]
forall (p, f) e Px Fandalla e T.

The Reeb vector fiel® of «y is tangent to fibers o# — B, henceR|f, is the Reeb
vector field ofa |, for any fiberF,. ConsequentlyR is the vector field induced o/
by the G-invariant vector field: € x(F)°. Hence the flow ofR generates the action
of T on M. Therefore, theK-contact metricg on M has to beT-invariant. Conversely,
any T-invariant metricg on M compatible witha, is K-contact. The action of on M
preserves the horizontal subbun@lec TM defined byA, and it preserves the symplectic
structure d|%. Choose & -invariant complex structuré; onH compatible with d ;|
The gy = day |y (Jy-, ) is aT-invariant metric or{. The T x G-invariant metricg
on F gives rise to ar-invariant metricgy on the vertical bundl@’ of M — B. The
metric gy = gy @ gy is a T-invariant metric onM compatible witha,, (recall that
&:=keray = HP (P xgEF)). Moreover, the Reeb vector fieRlof oy, is unit, normal to
& and Killing with respect tg,,. Thus(M, &7, gy ) is aK-contact structure o' — M =
P xg F —> B. O

Remark 4.5. There is no natural way to make the mBApxy F — B into a Riemannian
submersion relative to thE-contact metric orP x F produced byrheorem 4.4Indeed,
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if we trace through the construction gf; we will see that for any pointf, f]in the fiber
F, of P xg F — B we have

@Hp. 10 u®) = (W, (), dA, (", ™)) (4.2)

for any tangent vectorns, v € T, B. Here on the left-hand sidé, u* denote horizontal lifts
to Hjp, 7. On the right-hand side”, u* denote horizontal lifts to ke, C T, P. Thus the
horizontal part of the metrig,, depends on the points in the fib&g!

Example4.6. Let X be a compact Riemann surface ane £22(X) an area form which is
integral, i.e.[y w € Z. Let st - PS5 ¥ bethe corresponding principal circle bundle with
a connection 1-formi € 2(P, R)S satisfying A = n*w. ThenA is fat onR \ {0}. Let«

be a contact form on a manifold such that the flow of the Reeb vector figld is periodic.

For example, we may takéto be the odd-dimensional sphef® 1 = {z € C"|||z|%2 = 1}

with the standard contact form = /—1(}_ z, dz; — Z;dz)|szi-1. Or we can takeF to

be the co-sphere bundi&7*S¥) of a sphere with the contact form defined by the standard
round metric ons*. Then the associated bundfex ¢ F is a K-contact manifold.

The next example is a slight generalization. It produkesontact manifolds first con-
structed by Yamazaki by a “fiber joir{7].

Example 4.7. For ann-tuplea = (a1, a2, ...,as), aj > 0, the ellipsoidE, = {z €
C"| Zaj|Zj|2 = 1} ~ §2~1 s a hypersurface of contact type @. The correspond-
ing contact formw, is given byw, = /=13 z;dz; — z;dz;)|k,. For a generie, the
Reeb vector field of, generates the action of thetorusT”. The image of£, under the
ag-moment map is the simplex

Ag={(t1. ... 1a) €R" ~ Lie(T")*| > ajt; =1, t; >0}

Supposevy, ..., w, are integral symplectic forms on a compact Riemann surfasech
that ) " 7;w; is nondegenerate for all= (11, ...,1,) € A,. For example, we may pick
one integral area forrp and letw; = w for all j. Then the principall”-bundle P over
¥ defined byws, . .. , w, has a connection 1-form = (A, ..., A,) € 2(P,RHT" with
dA = (n*wy, ..., m*wy,). The connectio is fat at the points ofA,. Therefore P x« E,
has aK-contact structure. It is as?*~1-bundle overx.

5. Application 2: contact cross-sections

Let M be a manifold with an action of a compact connected Lie gr6éupreserving
a (co-oriented) contact structuéeon M. Then there exists &-invariant 1-forme with
kera = &. (Pick any 1-formy’ with kera’ = & and average it ove®. Since is G-invariant
and sinces is connected the averaged foansatisfies kew = £.) Denote by, : M — g*
the associated-moment map{¥,(x), X) = a,(Xpy(x)) forallx € M and allX € g; cf.
(3.5).
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Since G is compact, for any pointt € g* the isotropy Lie algebra, of u has a
G -invariant complement: in g:

g=g.®m (G -equivarian}. (5.1)

Moreover, we may choose so thatu |, = 0, i.e. € m°. (Pick aG-invariant metric ory
and letm = gf;.) Then a larg&>C-invariant open subse&tof m° is a slice for the coadjoint
action of G at . For example, ifu is genericg, is a Cartan subalgebra asds a Weyl
chamber (after some identifications).

We will need (se¢6, p. 37]for a proof):

Lemmab5.1. For anyn € Sthe pairing
wpimxm— R, X,V (n,[X,Y]).
is nondegenerate
Theorem 5.2. Let(M, & = kera, ¥, : M — g*) be a contact G-manifolgt € g* a point

m C g asubspace defined K§.1)with » € m° andS ¢ m° anR>C-invariant slice for the
coadjoint action of GDefine

R=v1S).
Then

1. R is a contact submanifold @iV, &) which is independent of the choice of the contact
form « used to define.it

2. G - Ris an open subset of M diffeomorphic to the associated buGidie;, R.

3. Foranyx e R

& =my(x) @ ENTR). (52)

In particular, the restriction of the contact structuéeto G - R is uniquely determined
by theG ,-invariant contact structurg® := &|r N TR.

Remark 5.3. We will refer to the contact submanifold?, £%) of (M, &) as the contact
cross-section.

Proof of Theorem 5.2. SinceY,, is equivariant, the imagelq, (T, M) contains the tangent
space to the coadjoint orhit - ¥, (x). SinceS is a slice, we have

T,9" =T,S+ T,(G - n)
for anyn € S. Hencey,, is transverse t&, and consequently
R:=v;1S)

is a submanifold. Also, by equivariance®f, R is G, -invariant. SinceS is a slice,G - S
(=G xg, S)is open ing*. HenceG - R = w1(G - S) is open inM. Similarly, it is easy
toseethaG - R = G xg, R.
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If o« is anotherG-invariant contact form giving its co-orientation, then’ = ef«
for some functionf € C>(M). Consequentliy,, = e/¥,. SinceS is R>%invariant,
11/0;1(& = @l/gl(&. Thus the cross-sectidR does not depend on the choice of the contact
form.

Note in passing that dirR = dimM — dim G - u, hence odd. In particulaR can be
contact.

We next argue that

my(x) = {Xpy(0)|X € m}
is contained in the contact distributigpfor all x € R. Indeed for anyX € m
ax(Xp (%) = (W (x), X) € (S, X) C (m?, X) = {0},

hencemy, (x) C &,.
Fix x € R. Sincemy(x) C & and sincel,yR & my(x) = T M, we cannothave
T,R C &,. ThereforeT.M = T, R + &, and consequently

R =T/ RNE,

is a codimension one subspaceZofR. The rest of the proof is an argument ti§&t is
indeed a contact structure @ In the mean time observe that we have pro{ea).

We first argue that the restrictiorefl,,, (r) is nondegenerate for atl € R. For this we
first compute @ on the tangent space ofGorbitin M. Letx € M be apointX,Y € g
two vectors;; = ¥, (x). Then (omitting evaluation af) we have

doa(X 1, Yor) = Xm(a(Ym)) — Y (@(Xm)) — a([Xnm, YuD).
Now
Xu(a(Ym)) = Xy (Yo, Y)) = (d¥(Xu), ¥).
So
Xu(a(Yn))(x) = ([d¥e)x(Xm(x)), Y) = (Xg= (), ¥) = —(n, [X, Y]),
where the second equality holds by equivariance of the momentimapimilarly,
Yy (X)) (x) = (n,[X, Y]).
Since Xy, Y] = — (X, YD m (we are dealing with a left action!), we have
—a([Xm, YuD () = (n, [X, Y]).
Putting everything together we get
do (X, Ya) () = —(n, [X, Y]) — (. [X, Y]) + (0, [X, Y]) = —(n, [X, Y]).

It now follows fromLemma 5. that for anyx € Sthe restriction d|m,, (v is nondegenerate.
We next argue that for anye R and any € £F = (T,RN&,) and anyX € m we have
day (X (x), v) = 0. Let V be a section of® — R with V(x) = v. Then dv(V, X 1) =
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Ve(Xm)) — Xm(a(V)) — o[V, Xu]). Now (V) = 0 ande([V, Xu]) = O (sinceé is
G-invariant [X s, V] is a section o£). SinceV is tangent toR, we have(d¥,).(V(x)) €
Ty, xS = m°forallx € R. ThereforeV(a(Xp))(x) = ((d¥y),(V(x)), X) € (m°, X) =0
for all x € R sinceX € m. Thus dv, (X (x), v) = 0. Consequently

£ C ) ).

By dimension count the above inclusion is an equality.

Since dr|m,x is nondegenerate,ofkz is nondegenerate as well for all € R.
Thusa|r is a contact formgR = ker(a|r) is a contact structure ar is a contact
submanifold. O
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